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NONSTATIONARY-FREQUENCY MEASUREMENTS IN RESEARCHING THERMOPHYSICAL 

PARAMETERS AND PHENOMENA. PART i. STEPWISE METHODS 

A. G. Shashkov, V. I. Krylovich, 
and A. S. Konovalov 

UDC 536.24 

A new approach is illustrated to the theory of thermal conductivity and the use 
of solutions there, which is a natural consequence of using new nonstationary- 
frequency methods in experiments. 

New industrial processes and process acceleration have made it necessary to produce new 
substances and materials with preset properties. Correspondingly, there is an increased need 
for information on the properties of new materials over wide ranges in the state parameters, 
and measurements of improved accuracy are required. 

This has led to extensive researches on the characteristics of gases, liquids, and solids; 
much of such research in power engineering is concerned with thermophysical parameters, par- 
ticularly thermal conductivity, specific heat, thermal expansion, and emissivity. The changes 
in the level and volume of research have naturally led to considerable attention being given 
to methods, particularly design and implementation of new fast but precise methods of measuring 
thermophysical parameters. This has led to radical reequipment in experimental thermophysics 
and to the replacement of cumbersome and slow classical methods by modern fast and highly 
informative measurement suites. The major trends in experimental techniques here include not 
only the general one of improving the informativeness but also the following: devising, de- 
veloping, and implementing methods for the simultaneous determination of several thermophysi- 
cal parameters, the general use of electronic methods and apparatus, measurement automation 
(including computerized data acquisition, control, and data processing), the use of nondestruc- 
tive and contactless methods to provide high throughput in all measurements, including speci- 
men installation and changing, substantial reductions in error levels, improved metrological 
systems, the design of essentially new methods for indirect measurements based on techniques 
in molecular optics and acoustics, and substantial extensions to the temperature and pressure 
ranges covered. 

There are two main groups of methods meeting these requirements: a) pulse and stepwise 
(monotone) heating, and b) periodic heating. These provide a basis for robotic monitoring 
and control systems for thermophysical parameters of materials and structures in various in- 
dustrial processes. 

The resolving power and response rate are improved if these methods are used with phase 
and frequency techniques rather than amplitude ones. 
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From the information-theory viewpoint, frequency methods are the most informative, and 
these are increasingly used. However, they are usually based on resonance, where the accuracy 
is governed mainly by the quality factor for the resonance sensor, not by the accuracy in 
frequency measurement, so the metrological characteristics of frequency measurements cannot 

be utilized fully. 

This disadvantage is overcome in the new nonstationary frequency methods [i, 2], whose 
distinctive feature is that the frequency shift in the output signal from the primary sensor 
provides information on the rate of change in some physical parameter, and if that parameter 
is the temperature, one measures the rate of change as a function of time and coordinates. 

The transfer from temperature measurement to rate measurement involves a new methodology 
in formulating boundary-value problems and in using the solutions. 

It is often not necessary to known the temperature pattern in a nonstationary treatment; 
one can then formulate the problem in a way such that the desired pattern is that of the rate 
of change in temperature, not the temperature itself. If it is necessary to transfer to 
the temperature pattern, it is sufficient to integrate the solution with respect to time. 

As an illustration, we consider a simple problem, which we formulate first for the tem- 

perature pattern and then for the rate of change. 

For a semiinfinite body [3] 

_ _  __ 0 2 T  (X,  T)  aT(x, ~) a (~>0, O<x<cr  
O~ Ox ~ 

T(x ,O)=To,  T(O, ~)=Te, O_T(+ce,~) =0. 
Ox 

We solve thisby the operational method to get 

T (x, T) -- Tc = er~ ( 

To--Tc  ~ 
We formulate the problem for the rates of change: 

OV (x, ~) O~V (x, ~) - - a  
O~ ax z 

V (0, "r) = (To -- To)5 ('r), 

x ) (1) 
2 V ~  

, V(x, 0 ) = 0 ,  

OV (+oo,  ~) - O. 
Ox 

We solve the problem by the operational method to get 

ATox exp( ~ ) (2) 
V(x ,~ )=  2 ~a---~-~-z 3 4 a T "  

On differentiating (i), we get the same result. 

The two methods are equivalent in complexity, at least as regards this class of problem; 
if the treatment is facilitated on reformulation in terms of rates of change, the return to 
the solution for the temperatures balances out the advantage. Nevertheless, the boundary 
and initial conditions are often simplified. For example, if there is an initial temperature 
distribution as a function of the coordinates, we have a zero initial condition in the new 
formulation. The advantages may be felt in solving much more complicated problems, particu- 
larly if it is not necessary to return to the solution for the temperature. 

The advantages of our method are fully observed for inverse treatments. There are many 
additional complications here, as for inverse problems generally. Often, such a problem vio- 
lates the conditions for uniqueness and stability, so regularization methods are required. 

If a thermal process is not very fast and the sensors are fairly close to the surface, 
while precision measurements are made, one can use direct methods in the inverse treatments, 
i.e., the inverse problem is solved in the initial formulation but by means of approximate 
methods that allow one to check the measure of the closeness between the solution and the 
exact one by varying the usual parameters in the computational algorithms (argument steps, 
number of terms in series, number of iterations, etc.). 

One usually employs a nonlinear thermal-conduction equation in an inverse treatment, and 
a study has been made [4] of the errors arising from using a linear equation instead of a 
nonlinear one. 
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However, %(T), c(T), and a(t) can be taken as independent of temperature for certain 
materials and not very wide temperature ranges, so one can use the linear equation written 
for the temperature or rate pattern. Many methods have been devised for determining constant 
~, c, and a, both stationary and nonstationary. Nonstationary (pulse and step or periodic) 
ones meet current requirements best. 

We restrict consideration to one of the step methods. 

We rewrite the solution to (i) as 

AT(Fo) = AToer[ ( 1 ) 
2 V----Wo ' (3 )  

where 

F o  = a ,  
X 2  " 

The structure does not allow one to derive an analytical formula for the thermal dif- 
fusivity; one determines a by recording AT(Fo) at a given point x in a semiinfinite body and 
calculates the relative excess temperature AT(Fo)/AT0, tables then being used to derive 
err(i/2 F~o) for the corresponding Fo. The thermal diffusivity is 

x 2 
a = - Fo. 

T 

We now consider the solution: ( x2) OAT (x, ~) _ V (x, x) - -  ATox  exp �9 ( 4 )  
Ox 2 -I,/ a a z  8 4 a ,  

One can use numerical or approximate analytical methods to solve this transcendental 
equation. 

We take another approach and examine the behavior of AT(x, T), V(x, ~), 8/~TV(x, ~). 

The point of inflection A (Fig. la) corresponds to the maximum in V(x, T), while the 
points of inflection B and C (Fig. ib) correspond to turning-point values in V'(x, ~), namely 
points D and E in Fig. Ic. 

It is complicated to detect the point of inflection on the AT(x T) graph, while if one 
measures V(x, T) rather than AT(x, T), one has an obvious prominent peak M, which corresponds 
to time T o . The maximum and the argument corresponding to it are readily observed, so they 
can be used to identify a. 

We differentiate (4) and equate it to 0: 

- -  5 / 2  " + = 0 ,  w h e r e k = - - ~ ,  ~ =  , - -  - -  " 

0z ~max Zmax 4a ~ 2 1 / ~  *max 2 ' 

i f  Tma x i s  known, t h e n  k = - ( 3 / 2 ) T m a  x ,  so 
X 2 

a - - -  . .  (5)  
6Zmax 

I f  i t  e a s i e r  t o  r e c o r d  V(Tmax),  we can s u b s t i t u t e  Tma x = - ( 2 / 3 ) k  i n t o  (4 )  and g e t  

1 , / -  2~" V(*m.x) X 2 

V +)' a = 6 " 3 AT0exp ( - -  (6 )  
% 

e x p r e s s e d  i n  t e r m s  o f  V(Tmax).  

T h i s  method  e n a b l e s  one  t o  d e t e r m i n e  )~ and c i f  one  knows t h e  h e a t  f l u x  a b s o r b e d  by t h e  
body in  a c e r t a i n  t i m e .  

A c c o r d i n g  t o  ( 3 ) ,  t h e  amount  o f  h e a t  g i v e n  up ( a b s o r b e d )  by a p r o b e  in  t i m e  dT o v e r  a 
s e c t i o n  S i s  [3] 

�9 ( O T )  d'~=--~'S AT~ d~, (7 )  
dQ --XS ~ .=o 3/74a~ 
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Fig. I. Time dependence of the temperature AT(x, T) and of the first 

derivative V(x, m) and the second derivative V'(X, ~) with respect to 
time (parts a, b, and c respectively) at any point x. 

and in the time interval x 2 - "c z 

Q = 2Sb (Te -- To)(]/~ -- V'~) (8) 
V s  

The latter gives the thermal activity coefficient b = ~Xc, which enables one to determine 

and c if a = %/c is known. 

If one can measure 8Q(0, x)/8~, one can use (4) and (7) to get 

oQ (o, ~.,_) OQ (o ,  - q )  _ bSATo l/C, - V ~  (9) 
a~ a~ VT~ V ~, ~ ' 

from which one finds b and the other coefficients. 

There is another simple relation that reduces the measurement time substantially. We 
assume that we know 

V~ = ~]-3 /2  exp x~" and V2 = ~ 3 / 2  exp . 
4a~1 4 a ~  

We d i v i d e  one  e q u a t i o n  by t h e  o t h e r  and  e x p r e s s  a a s  

x~Am ( V f ( _ ~ j _ ) a / 2 ) - l .  (i0) a -- In . 
4Tia:~ \ TI , 

If AV/V << i and A'c/x << i, this exact formula becomes the approximation 

x2 ( AV z' ) a . . . .  + 3 - t  (10a) 

4~ l A'c V1 ~ " 

If we take (SV/Om)~l instead of 8V/A~, (10a) becomes the exact result 

a 
4z O'r V + ( 1 0 b )  

As 8V/8~ is not measured directly, it is complicated to use (10b), so we restrict con- 
sideration to (i0). 

We estimate the error in measuring the quantity 

/ ~176 i=21 I+i _ a x A'~ 171 "cr . 

V~ ( % ] s/2 
5 1 n - v ~  \ "q / 

As the time measurement accuracy is higher by several orders of magnitude than the accuracy 
in measuring the other quantities, the time terms can be neglected: 

VI 

16~ 1=2[ ~x i+ 1 6v, I+ 1 I (lOc) 
- ~ -  - - ~  - - - ~ 1  ] [ ln VI 
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here we have used the obvious inequality 

l'm-~--(V" (T--t" 13/21-'~\%/ , I1n-~V2 I-I. 

We impose the condition 
V1 I§ 

In 1,'o 

We s o l v e  t h i s  t r a n s c e n d e n t a l  e q u a t i o n  t o  g e t  

If this condition is met, then 

vo ~> 3,57. ( lOd)  

6a ==2 6__x_x q_ --V~- . (lOe) 
a x 

This shows that the error in determining a is governed by 6x and 6V I and by the values chosen 
for x and V i. We specify 16a/al and use the known 6x and 6V i to arrive at lower limits for 
x and V I. If we know the order of a, we can use the proposed x and AT 0 to estimate the maxi- 
mum rate of change at a given point x: 

V~,a~ == 1/ ~ X~ exp -- . 

I n  c h o o s i n g  V1, one must  remember t h a t  V 1 i s  l e s s  t h a n  Vmax; t o  e s t i m a t e  t h e  l a g  in  t h e  method,  
we give detailed values. 

Let AT 0 = I~ x = 10 -3 m, a = 10 -7 m2/sec, and 6x = i0 -~ m, 6V = 10-3K/sec. The order 
of a corresponds to insulating materials. The order of 6V is set from the actual performance 
of nonstationary-frequency methods. With 16a/al ~ 10 -I we get that ~max ~ 2 sec. The lower 
limit to V I is 10 -2 K/sec, which corresponds to a time of 0.4 sec. During this time, the 
temperature at point x increases by only 1.5-10 -3 K, which corresponds to the error of measure- 
ment in nonstationary-frequency methods. If we wish to use such methods, the temperature 
can begin to be measured (on the basis of 16a/al) only from �9 = i sec, which is five times 
later than the instant when rate measurement starts. If on the other hand one uses tradi- 
tional amplitude methods to measure AT (for example, by means of thermocouples), the time 
for starting the measurements will be larger by several orders of magnitude. 

Then transferring from measuring T(x, T) to V = ST(x, T)/8~ provides simple working for- 
mulas and enables one to evaluate the performance of a step method. 

This comparison has been made for step methods on a linear model, and the numerical esti- 
mates apply insofar as the model is correct. When one uses nonstationary methods, it is very 
important in estimating the error to consider the lag in the sensors. These aspects and some 
others require separate consideration. 

NOTATION 

T, temperature; V, rate of temperature variation; x, space coordinate; ~, time; a, thermal 
diffusivity; 6(T), Dirac delta function; AT, difference between the temperature at point x 
at time ~ > 0 and the temperature at the boundary at �9 = 0; AT0, difference between the tem- 
perature at the boundary at time T > 0 and temperature at the initial time; X, thermal conduc- 
tivity; c, heat capacity; Fo, Fourier number; A, amount of heat; S, cross-sectional area; 
b, thermal activity coefficient. 
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